A SYNOPSIS OF THE EVA TRAINING CONDUCTED ON EASE/ACCESS FOR STS - 61-B

Kathryn A. Havens Johnson Space Center - DF4

Space Construction Conference NASA - Langley Research Center August 6-7, 1986

I. EASE/ACCESS Training Problems

A. Large 3-dimensional structures

- Could not be accommodated in the JSC Weightless Environment Training Facility (WETF) since pool is only 33 feet wide, 78 feet long, and 25 feet deep
- Could be accomplished in the MSFC Neutral Buoyancy Tank (NBT) since pool is 40 feet deep and 75 feet in diameter

- B. Training required extensive integration with the Remote Manipulator System (RMS) and Photo/TV plans
 - No functional RMS existed at the JSC WETF at that time
 - MSFC NBT did have a working RMS although the controls are not "flight-like"
 - Considered negative training for the RMS operator due to work station separation and non-flight-like controls
 - The Manipulator Development Facility (MDF) at JSC used a "cardboard crewman" and an MPESS mockup to provide RMS operator training

C. Extensive PHOTO/TV coverage

- Could not provide the requested coverage due to limited locker stowage
- Required a very detailed plan which used a dedicated crewman to accomplish the plan
- Resulted in the most photographically documented EVA to date
- MDF used to provide best visual simulator of the required views for PHOTO/TV training

II. Training Plan

A. Normal EVA training plan

- Launch minus 6 to 8 months Start with classroom or 1-g briefing and SCUBA familiarization of hardware (1 or 2 sessions)
- L-6 to L-3 months (biweekly) In a tank, perform EMU suited runs of the basic tasks to provide the detailed training and development of procedures
- L-3 months to L-2 weeks (weekly) Perform end-to-end timeline runs with EMU suited crewmen to build familiarity with timelines and work on contingency plans

NOTE: Anything prior to official assignment of the crew is supported by the EVA representative from the astronaut office

Crewmen who participated in development runs on the EASE/ACCESS hardware include

John Blaha Gordon Fullerton Ron McNair Bryan O'Connor Ellison Onizuka Robert Springer

Jerry Ross
Sherwood Spring

George Nelson

Majority of development work

B. EASE/ACCESS training philosophy

- Early portion of training would be done at MSFC
- The assigned crew cannot be away from JSC during the final 3 months of preparation due to integrated simulations and flying schedules
- Thus the early training would be done at MSFC in August prior to a November launch
- Development of the EVA timeline was difficult because the principal investigators (PI's) had 9 hours of activity to pack into 6 hours of EVA timeline.

C. Actual EASE/ACCESS training

- L-7 months (April 9,10) Ross, Spring Early familiarization runs performed at MSFC
 - Hardware already there for continuing development runs
- L-4 months At MSFC performed end-to-end timeline runs using proposed but too-long timelines
 - Proved to PI's that the amount of activity had to be cut down
 - Reworked the timelines and provided integrated training with the RMS Operator and the crewman in the manipulator foot restraint (MFR)

- August 7, 1985 One run of baseline experiments
 - EVA-1 timeline run
- August 8, 1985 One run of contingency procedures due to broken arm system
- August 9,12,13 1985 Three runs of the detailed test objectives or the EVA-2 timeline
 - Used a shortened timeline for EVA-2

- L-3 months to L-2 weeks Training hardware brought to JSC WETF and performed only the baseline experiments or EVA-1 timeline on a biweekly basis
 - Tried to do long runs at ~4.3 psid to closely simulate flight conditions
 - Included 2 EVA simulations, which were integrated with the mission control center
 - Included contingencies for EASE/ACCESS and the EMU

SUMMARY OF TRAINING FOR 61-B EASE/ACCESS

I. EXTRA-VEHICUL	EXTRA-VEHICULAR ACTIVITY (EVA) TRAINING							
FACILITY	DATE	HOURS	DESCRIPTION					
SL NBT	8/7/85	4.0	EVA-1 TIMELINE					
SL NBT	8/8/85	3.5	CONTINGENCY RUNS					
SL NBT	8/9/85	4.0	EVA-2 TIMELINE					
SL NBT	8/12/85	4.0	EVA-2 TIMELINE					
SL NBT	8/13/85	4.0	EVA-2 TIMELINE					
		19.5	SUBTOTAL					
WETF	9/17/85	4.5	EVA-1 & CONTINGENCIES					
WETF	9/24/85	5.0	EVA-1 TIMELINE					
WETF	10/11/85	4.0	EASE/ACCESS CONTINGENCIES					
WETF	10/16/85	4.5	ACCESS DTO, EASE BASELINE					
WETF	10/23/85	4.0	EVA INTEGRATED SIMULATION					
WETF	10/29/85	4.0	EVA-1 TIMELINE					
WETF	WETF 11/6/85		EVA-1 TIMELINE					
WETF			EVA INTEGRATED SIMULATION					
		35.75	SUBTOTAL					
		55.25	TOTAL					

SUMMARY OF TRAINING FOR 61-B EASE/ACCESS - Continued

II. PHOTO/TV TRAINING							
FACILITY	DATE	HOURS	DESCRIPTION				
CLASSROOM CREW COMPARTMENT FULL FUSELAGE FULL FUSELAGE CLASSROOM	3/5/85 4/8/85 9/26/85 10/30/85 11/20/85	2.0 3.0 2.0 2.0 1.5					
		10.5	TOTAL				

SUMMARY OF TRAINING FOR 61-B EASE/ACCESS - Concluded

III. REMOTE MANIP	II. REMOTE MANIPULATOR SYSTEM (RMS) TRAINING								
FACILITY	DATE	HOURS	DESCRIPTION						
SES	9/20/85	1.75							
SES	11/6/85	3.00							
		4.75	SUBTOTAL						
MDF	8/2/85	3.0							
MDF	9/20/85	1.5							
MDF	9/27/85	4.0							
MDF	10/11/85	2.0							
MDF	10/16/85	2.75							
MDF	10/21/85	1.0							
MDF	10/25/85	3.0							
MDF	10/31/85	2.5							
MDF	11/4/85	2.0							
MDF	11/5/85	2.75							
MDF	11/15/85	4.0							
		28.5	SUBTOTAL						
		33.25	TOTAL						

D. Results of Training

- Fully defined the timelines for EVA-1 and EVA-2
- Defined the method of using the MFR as a remote work platform
- Resolved safety concerns on jettisoning hardware, strapdowns, and lost pieces
- Completely defined and simulated the intravehicular jobs and integrated these jobs with the EVA crewmen
 - PHOTO/TV documentor
 - Choreographer
 - RMS Operator

INITIAL CONDITIONS (EVA-2)

PET 00:00:00 = MET 04:20:30

√Airlock stowage complete: 35mm camera (one)

Four wrist tethers For each crewman:

- (1) Wrist tether
- (1) Adj wrist tether
- IV IMAX STANDBY/SETUP (PL OPS, IMAX)

RMS POSITIONED FOR GRAPPLE

CRT SM 94 PDRS CONTROL
PL ID - ITEM 3 +4 EXEC
BRAKES - OFF (tb-OFF)
MODE - ORB UNL, ENTER
ITEM 24 +4 EXEC
Mnyr to grapple pos

-850, +82, -435, 270, 0, 270

SY | SP | EP | WP | WY | WR | -49 | +66 | -123 | -48 | +13 | -20

EVA 2 - Summary Timeline

PET	TASK
0 + 00 + 0 + 15	depress, egress, and translate to MFR stowage
0 + 15-0 + 25	unstow/grappie MFR
0+25-0+35	configure ACCESS for build
0 + 35 - 1 + 00	EV1 - low man - nominally build bays 1 - 9
1+00+1+20	EV1 ingress MFR, install tool boards, load components on boards
1 + 20 - 1 + 35	EV1 in MFR - build bay 10 from MFR
1 + 35 + 1 + 55	EV1 in MFR - utility cable installation
1 + 55-2 + 10	EV1 in MFR - ACCESS truss manipulation
2 + 10 + 2 + 20	EV1 egress MFR, EV2 ingress MFR
2 + 20 - 2 + 30	EV2 in MFR - disassemble bay 10 from MFR
2 + 30 - 2 + 35	EV2 in MFR - maintenance/repair task on bay 8
2+35+2+40	EV2 in MFR - rebuild bay 10
2 + 40 + 2 + 55	EV2 in MFR - manipulate access truss
2 + 55 + 3 + 00	EV2 egress MFR
3 + 00 + 3 + 20	EV2 as low man - Nominally disassemble 10 bays
3 + 20 - 3 + 30	Stow ACCESS hardware and unstow EASE hardware
3 + 30 - 3 + 40	Unstow EASE cradle; EV2 ingress MFR
3 + 40 + 3 + 45	EV2 in MFR - build heat pipe
3 + 45 + 3 + 50	EV2 in MFR - manipulate heat pipe
3 + 50 + 4 + 15	EV2 in MFR - build EASE
4 + 15 - 4 + 30	EV2 in MFR - manipulate EASE
4 + 30 - 4 + 35	EV2 egress MFR, EV1 ingress MFR
4 + 35 + 4 + 50	EV1 in MFR - manipulate EASE
4+50+5+05	EV1 in MFR - disassemble EASE
5 + 05 + 5 + 10	EV1 in MFR - build heat pipe
5 + 10+5 + 20	EV1 in MFR - manipulate heat pipe
5 + 20+5 + 25	EV1 in MFR - stow heat pipe
5 + 25 + 5 + 35	Pass tool boards to EV2, EV1 egress MFR
5 + 35 - 5 + 45	Stow MFR, close EASE cradle
5 + 45 + 5 + 50	Stow peripheral equipment
5 + 50 -6 + 00	Ingress airlock
6 + 00	Repress

FS 8-1

EVA/61-B/FIN

NOMINAL TIMELINE

III. Flight Data File (FDF) and Flight Rules Production

A. EVA timelines

- Written prior to training at MSFC but rewritten due to length of timelines
- Turned in to editors at L-3 months, which was late should produce PRELIMINARY version at L-4 months
- Lingering problem of defining timeline with equal amounts of time for both EASE and ACCESS
- Produced the integrated EVA checklist containing detailed EVA, RMS, and PHOTO/TV procedures

INITIAL CONDITIONS (EVA-1)

PET 00:00:00 = MET 02/21:45

√Airlock stowage complete: 35mm cameras (two) AAPS target with two wrist tethers

IV /RMS in viewing position /P/TV06 SETUP (EVA), 1-16 (PHOTO TV, P/TV SCENES)

IV IMAX STANDBY/SETUP (PL OPS, IMAX) ✓DAP A1,88 AUTO VERN *If PRCS: DAP A6/88 AUTO/NORM •

MNVR RMS TO ACCESS VIEWING POSITION

PARAM sel - JOINT ANGLE BRAKES - OFF (tb-OFF) MODE - SINGLE, ENTER

SINGLE DR to:

	SY	SP	ΕP	WP	WY	WR
1	0	+25	-25	+5	0	0
1	+20					
2			-8			
3		+8				
1	+20	+8	-8	+5	0	0

 $\frac{\text{NOTE}}{\text{C/W SINGULAR lt}}$ ON (MA) (EP = -7.6)

BRAKES - ON (tb-ON)

EVA-1 Summary Timeline	

PET	TASK
0+00+0+30	depress and egress, translate to MPESS
0 + 30 - 0 + 45	configure ACCESS for build
0+45+1+05	EV1 - low man - build bays 1-5
1+05+1+20	EV2 - low man - build bays 6-10
1 + 20 + 1 + 40	EV2 - low man - disassemble bays 10-6
1 + 40 + 1 + 55	EV1 - low man - disassemble bays 5-1
1+55+2 • 15	stow ACCESS assembly fixture
2 + 15 + 2 + 25	unstow peripheral hardware and unlatch EASE cradle
2 • 25 - 2 + 40	EV1 - low man assemble EASE - 1
2 + 40 + 2 + 55	EV1 - low man disassemble EASE - 1
2 + 55+3 + 10	EV1 - low man assemble EASE - 2
3 + 10 + 3 + 25	EV1 - low man disassemble EASE - 2
3 + 25 + 3 + 40	EV1 - low man assemble EASE - 3
3 + 40+3 + 55	EV1 - low man disassemble EASE - 3
3 + 55+4 + 10	EV1 - low man assemble EASE - 4
4 + 10 - 4 + 25	EV1 - low man disassemble EASE - 4
4 + 25 + 4 + 30	EV2 - law position
4 + 30 - 4 + 45	EV2 - low man assemble EASE -5
4+45+5+00	EV2 - low man disassemble EASE - 5
5+00+5+15	EV2 - low man assemble EASE - 6
5 + 15 + 5 + 30	EV2 - low man disassemble EASE - 6
5+30+5+40	secure EASE hardware and stow peripheral equipment
5 + 40 - 5 + 45	EV2 - obtain AAPS target and deploy target
5+45+5 + 55	ingress airlock
5 + 55	repress

FS 7-1

EVA/61-B/FIN

NOMINAL TIMELINE EVA-1

PET 00:00:00 = MET 04:20:30

√Airlock stowage complete: 35mm camera (one)

Four wrist tethers For each crewman:

- (1) Wrist tether (1) Adj wrist tether

IMAX STANDBY/SETUP (PL OPS, IMAX)

IV ✓P/TV06 SETUP (EVA), 1-16 (PHOTO TV, P/TV SCENES)

IV ✓DAP A1,88 AUTO/VERN • If PRCS DAP: A6,B8 AUTO/NORM •

RMS POSITIONED FOR GRAPPLE

SM 94 PDRS CONTROL PL ID - ITEM 3 +4 EXEC BRAKES - OFF (tb-OFF) MODE - ORB UNL, ENTER ITEM 24 +4 EXEC Mnvr to grapple pos

-850, +82, -435, 270, 0, 270

SY SP EP WP WY WR -49 +66 -123 -48 +13 -20

EVA-2 - Summary Timeline

PET	TASK
0 • 00 • 0 + 15	depress, egress, and translate to MFR stowage
0 + 15-0 + 25	unstow/grapple MFR
0 + 25+0 • 35	configure ACCESS for build
0 + 35+1 + 00	EV1 - low man - nominally build bays 1 - 9
1+00+1+20	EV1 ingress MFR, install tool boards, load components on boards
1 + 20 + 1 + 35	EV1 in MFR - build bay 10 from MFR
1+35+1+55	EV1 in MFR - utility cable installation
1 + 55+2 + 10	EV1 in MFR - ACCESS truss manipulation
2 + 10+2 + 20	EV1 egress MFR, EV2 ingress MFR .
2 + 20 - 2 + 30	EV2 in MFR - disassemble bay 10 from MFR
2 + 30 - 2 + 35	EV2 in MFR - maintenance/repair task on bay 8
2 + 35 + 2 + 40	EV2 in MFR - rebuild bay 10
2 + 40 + 2 + 55	EV2 in MFR - manipulate access truss
2 + 55 + 3 + 00	EV2 egress MFR
3+00+3+20	EV2 as low man - Nominally disassemble 10 bays
3 + 20 + 3 + 30	Stow ACCESS hardware and unstow EASE hardware
3 • 30+3 + 40	Unstow EASE cradle; EV2 ingress MFR
3 + 40 + 3 + 45	EV2 in MFR - build heat pipe
3 + 45 + 3 + 50	EV2 in MFR - manipulate heat pipe
3 + 50 + 4 + 15	EV2 in MFR - build EASE
4 + 15 + 4 + 30	EV2 in MFR - manipulate EASE
4 + 30 - 4 + 35	EV2 egress MFR, EV1 ingress MFR
4 • 35 • 4 + 50	EV1 in MFR - manipulate EASE
4 + 50 - 5 + 05	EV1 in MFR - disassemble EASE
5 + 05 + 5 + 10	EV1 in MFR - build heat pipe
5 + 10 + 5 + 20	EV1 in MFR - manipulate heat pipe
5 + 20+5 + 25	EV1 in MFR - stow heat pipe
5 + 25 + 5 + 35	Pass tool boards to EV2, EV1 egress MFR
5 • 35+5 + 45	Stow MFR, close EASE cradle
5 + 45+5 + 50	Stow peripheral equipment
5 + 50 + 6 + 00	Ingress airlock
6 + 00	Repress

FS 8-1

EVA/61-B/FIN

NOMINAL TIMELINE FVA_2

STOW	ASSEMBLY FIXTURE 6 (0+05)
EV1 EV1 EV1	Slide guide rail bracket up into place. Do not pin Release positive lock on toggle clamp Release toggle clamp - rotate handle down.
BOTH	4) Stow assembly fixture 5) Secure locking bracket with yellow pip pin
EV2	6) Secure mast clamps
EV1	Sow assembly fixture Secure locking bracket with yellow pip pin Secure mast clamps Close assembly fixture toggle clamp - rotate handle up Close positive lock on toggle clamp

MNVRR	MS T	OEAS	E VIEW	ING PO	OSITIO	<u>N</u> [7			
PARAM BRAKES MODE -	- OF	F (tb-O	FF)						
SINGLE	DR to) :							
	_	SY	SP	ΕP	WP	WY	WR	1	
	┝			-					
	1	+ 20	+ 8	-8	5	0	0		
	2		+ 15						
	3			-15					
4 +20 +15 -15 5 0 0									
	BRA	KES - O	N (tb-C)N)	•		•		

FS 7-10 EVA/61-8/FIN

CABLE RUN 12 BRAKES - OFF (tb OFF) MODE - ORB LD, ENTER Move down to start position + Z (down) to Z = -805 and - Y (right) to Y = -120 Adjust attitude to Pitch = 356 Yaw = 285 Roll = 265 with -Yaw (left) to 285 and coordinated + Pitch (up) and -Roll (left) to P = 356 and R = 265 Mivr + Z (down) and + Y (left) to start position NOTE Monitor W Y for Singularity at -75 (Alleviate with -Roll (left) crewman face down if needed) Check clearance from sunshield -836, -100, -427, 356, 285, 265 | SY | SP | EP | WP | WY | WR | + 23 | + 82 | 135 | 57 | 69 | 368 | (or -b) BRAKES - ON (tb-ON) When loaded and ready to run cable, BRAKES - OFF (tb UFF) Mnvr -Z (up) stopping where required to attach cable Above Z = -913, use + Roll (right) as required to remain clear of EP singularity at -7.6 To return, reverse process, then BRAKES - ON (tb-ON)

B. Other FDF products

- Payload Deployment and Retrieval System (PDRS) Checklist containing the detailed RMS procedures - developed at the Shuttle Engineering Simulator (SES) and MDF
- PHOTO/TV Checklist initial requirements submitted after the training at MSFC but continually revised due to the ongoing MDF training

Flight Data File PDRS Operations Checklist

STS 61-B Flight Supplement

Mission Operations Directorate Systems Division

Final, Revision A November 21, 1985

Flight Data File Photo/TV Checklist STS 61-B

Mission Operations Directorate Operations Division

FINAL November 15, 1985

NASA

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center Houston, Texas

C. Flight Rules

- Effort made to think through all contingencies and plan for them
- Effort to document all agreements
 - PRELIMINARY FLIGHT RULES, published 10/1/85
 - FINAL FLIGHT RULES, published 10/30/85

NASA - JOHNSON SPACE CENTER

FLIGHT RULES

R	RULE		
		SECTION AB - EXPERIMENTAL ASSEMBLY OF STRUCTURES IN EVA/ASSEMBLY CONCEPT FOR CONSTRUCTION OF ERECTABLE SPACE STRUCTURES (EASE/ACCESS)	
		CONTENTS	
			PAGE
	A8-1	ABSOLUTE TIME CUTOFFS	A8-2
	A8-2	EVA 2 ORBITER CONSTRAINTS	A8-2
	A8-3	LOSS OF EXPERIMENT HARDWARE DURING EVA	A8-2
	A8-11	PHOTO/TV FAILURES	A8-4
		VRCS FAILURES	
	A8-12		A8-4
	A8-13	EMU FAILURE DURING EVA	A8-4
	A8-14	LOSS OF CAUTION AND WARNING DISPLAYS	A8-4
	A8-21	EMERGENCY INGRESS	A8-5

IV. Use of the Remote Manipulator System (RMS) and the Manipulator Foot Restraint (MFR)

A. Concern about various failure modes of RMS

- Some failure modes cause the arm to move without command or move in the wrong direction
 - Could overload the structures
 - Could be avoided by procedure the EVA crewman did not touch the structure until the operator had put the brakes on
 - This procedure also reduced the time when the system was susceptible to failure, ie. only when the MFR was being moved could a failure occur
- Using these procedures the loads were minimized to the brakeslip torque valves

- B. Concern about training fidelity for the RMS
 - The MSFC NBT arm had limited travel in some joints and too much travel in others
 - Caused procedures to be redeveloped at JSC on high fidelity simulators
 - Ultimately caused some delay in flight procedures